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Abstract. Absorption coefficient and polarization of collisionally redistributed fluorescence light in a range
of detunings around the atomic resonance have been calculated for Ba, Sr and Mg perturbed by He and
Ne. Results are obtained from fully-quantum mechanical coupled-channels calculations including the rel-
evant ground and two excited 1Σ and 1Π molecular states for each diatomic. Close-coupling calculations
are carried out based on the theoretical potential curves obtained by means of a pseudopotential + va-
lence configuration-interaction (CI) technique. For accurate comparison with experiment the calculated
absorption coefficients and polarizations have been thermally averaged over the collision energy. The the-
oretical absorption profiles and linear polarization ratios agree, in general, quite well with the available
experimental data.

PACS. 34.70.+e Charge transfer – 32.80.-t Photon interactions with atoms

1 Introduction

Several papers have reported both the experimental mea-
surements and theory of the collisional redistribution of
polarized light by alkaline earth atoms perturbed by rare
gases (RG). The process can, in general, be described by
the equation

M(1S0) +X(1S0) + ~ωL →M(1P1) +X(1S0),

where M represents an alkaline earth atom and X is one
of the RG atoms. A laser light photon of frequency ωL
and polarization vector eq is absorbed in the wings of the
resonance line of the alkaline earth atom during collision
with a (RG) atom. The fluorescence light of resonance fre-
quency ω0 observed after collision is depolarized. Study of
depolarization of the fluorescence light provides informa-
tion about collisional mechanisms and interaction poten-
tials governing the atomic collisions. Since the pioneering
experiments of Carlsten et al. [1] on collisional redistribu-
tion of light in the Sr-Ar system, a lot of experimental and
theoretical studies have been devoted to both the alkali
and alkaline earth atoms perturbed by rare gases. Among
the alkaline earth atoms Sr [2–5] and Ba [6–10] belong to
the most extensively explored systems.

In the experiments, a special attention has been given
to the dependence of the depolarization rates on detun-
ing. Theoretical developments in this field have included
both full quantum close-coupling formulations and various
semiclassical approaches. Omont et al. [11] have given a
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general description of the redistribution theory in apply-
ing to the case where the impact theory of spectral line
broadening is valid. There has also been much interest in
the study of fluorescence depolarization for excitation in
the far wings of the absorption line where the impact limit
does not apply. Collisional redistribution in this spectral
range has been studied theoretically by several authors.
The quantum optical collision approach to this problem
has been formulated by Julienne and Mies [4,12–14] for
the weak-coupling, binary collision case and by Kulander
and Rebentrost [15,16] for the cases of zero and non-zero
spin of the optically active atom. The theory fully takes
into account the nonadiabatic nature of optical collisions
in which multiple electronic states arising from degener-
ate or nearly degenerate atomic states are involved. The
calculational methods are based on a coupled-channels ex-
pansion of the total wave-function of the system, thereby
it is possible to treat correctly the angular momentum cou-
pling and its change arising from absorption and emission
of a photon. On the other hand classical and semiclassical
treatments of optical collisions often ignore the complex-
ity arising from angular momentum coupling including the
angular momentum change of the collision system due to
its interaction with the radiation field. In addition, the
classical approach suffers from uncertainties in the choice
of realistic trajectories needed to solve the electronic prob-
lem [5].

This paper presents the numerical results of our fully
quantal close-coupling scattering calculations for Ba, Sr
and Mg perturbed by light rare gases He and Ne. The
calculations are based on the method formulated by Juli-
enne and Mies [11,13]. So far quantal closed-coupled
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calculations for radiatively assisted collisions of alkaline
earth atoms have been carried out for Ca-He based on
model potentials [17] and for Sr-Ar using adjusted molecu-
lar potentials [4]. Contrary to that the present calculations
involve the more realistic adiabatic potentials obtained by
means of a pseudopotential + valence configuration inter-
action (CI) technique [18]. In particular the potentials for
Ba-He have already been used successfully in our close-
coupling calculations for the Ba(6p 3Pj ← 6p1P1) excita-
tion transfer and Ba(6p 3Pj→j′ ) intramultiplet transition
cross-sections in collisions with He [19]. The quality of
these potentials has also been supported by the recent
calculation of diffusion cross-sections for barium-helium
collisions [20]. The potentials for the other systems are
demonstrated here for the first time. The present calcu-
lations have been motivated by the measurements of po-
larization of far-wing collisionally redistributed light from
Sr perturbed by rare gases reported by Alford et al. [3]
and of absorption coefficient and polarization for the Ba -
(RG) atoms conducted recently by the Andersen’s group
[10]. The goal of this study is to reproduce their experi-
mental results for the Ba-He(Ne) and Sr-He(Ne) pairs and
to predict analogical results for Mg-He and Mg-Ne. Unfor-
tunately, for the time being our numerical calculations for
the heavy rare gases (Ar, Kr, Xe) are very time consum-
ing, particularly on account of the averaging theoretical
cross-sections over the collision energy. The following sec-
tion summarizes the relevant features of the quantum the-
ory of atomic scattering in the presence of a laser field and
presents the quantum formulation of the coupled channels
equations appropriate to the alkaline earth - RG atom sys-
tem. Section 3 includes a brief presentation of the relevant
potential curves used in the present calculations. The re-
sults and their discussion are the contents of Section 4.

2 Theory

2.1 General formulation

The quantum theory of atomic scattering in the presence
of a radiation field has been presented in detail elsewhere
and applied successfully to optical collisions [4,12,13,16,
17]. This section summarizes the relevant features of the
theory and describes the coupled channels equations ap-
propriate to the alkaline earth - RG system. The total
Hamiltonian of the molecule-field system is given by

H = Hmol +Hrad +Hint, (1)

where Hmol is the Hamiltonian of the isolated alkaline
earth - RG atom quasimolecule, Hrad is the Hamiltonian
of the radiation field and Hint describes the interaction
between the molecule and the field. The term Hmol is de-
fined as

Hmol =
−~2

2µR2

d

dR
R2 d

dR
+Hrot +Hel. (2)

Here µ is the reduced mass of the colliding pair of atoms
and R stands for the interatomic distance. Hel designates
the electronic Hamiltonian including the nuclear repul-
sion and, in general, the spin-orbit interaction which in
the present case does not occur since we consider only a
singlet-singlet transition. The term Hrot is the Hamilto-
nian for the orbital motion of the two nuclei. The field
Hamiltonian is given by

Hrad = ~ωL(a†a+ 1/2), (3)

where a† and a are the photon creation and anihilation
operators and ωL is the laser frequency. The field Hamil-
tonian eigenvalues and eigenfunctions are defined by

Hrad | n〉 = n~ωL | n〉, (4)

where n represents the number of photons in the laser
mode.

The molecule-field interaction term is expressed as

Hint = (2π~ωLφ/c)1/2êq · d, (5)

where ~ωLφ is the laser power, d stands for the molecu-
lar dipole moment operator, êq specifies the direction of
polarization of the laser light and c is the speed of light.
The field-free molecular states are eigenfunctions of the
total angular momentum J and its space-fixed projection
Jz with J=j+l. Here j denotes the total electronic angular
momentum operator and l is the orbital angular momen-
tum of the nuclear motion with the quantum numbers
j and l, respectively. In the considered case the radiating
atom has angular momentum j0 = 0 and j = 1 in its initial
and final states, respectively, whereas the perturber atom
is a structureless 1S0 atom. The space-fixed quantization
Z axis is taken to be along the polarization direction êq of
the laser beam for linearly polarized light and along the
propagation direction of the laser beam for circularly po-
larized light. The scattering channel states which describe
the asymptotic fragments with atomic angular momentum
j and relative angular momentum l given by

| jlJM〉 =
∑
m,ml

(jlmml | JM) | jm〉 | lml〉 (6)

form a convenient basis, the Hund’s case-(e) basis, for ex-
panding the total wave function for field-free scattering.
Here (....| ..) denotes a Clebsch-Gordan coefficient. The
expansion coefficients satisfy then the usual close-coupled
equations which are diagonal in the total angular momen-
tum J and its projection M on the space-fixed Z axis.
In the presence of the radiation field J is no longer a
good quantum number, a given initial J0 being coupled
to J = J0, J0 ± 1 in the final state. The total wave func-
tion can be expanded in the molecule-field basis, consisting
of products of asymptotic eigenstates of Hmol and eigen-
states of Hrad

ψ(R, r) =
∑
jlnJM

1

R
F j0l0J0M0

jlnJM (R) | jlJM〉 | n〉, (7)
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〈jlJM ;n′q | Hint | j0l0J0M0;nq〉 = δn′q ,nq−1

(
2π~ωLφ

c

)1/2
(2l + 1)1/2(2l0 + 1)1/2

2J + 1

× (J01M0q | JM)
∑
ΩΩ0

(jlΩ0 | JΩ)(j0l0Ω00 | J0Ω0)(J01Ω0, Ω −Ω0 | JΩ)〈jΩ | dΩ−Ω0(R) | j0Ω0〉, (10)

〈jlJM | Hint | j0l0J0M0〉 =

(
2π~ωLφ

c

)1/2

(J01M0q | JM)
{

(−)J0+1−J〈A1Π | d1 | X
1Σ〉δll0

+
(2l + 1)1/2(2l0 + 1)1/2

2J + 1
(1l00 | J0)(J0100 | J0)[〈B1Σ | d0 | X

1Σ〉 − 〈A1Π | d1 | X
1Σ〉]

}
. (11)

where j0, l0, J0 and M0 refer to the initial state. The case -
(e) basis functions have well-defined molecular parity with
respect to inversion of all coordinates through the molec-
ular centre of mass. The standard molecular spectroscopy
parity labels are e and f for the respective basis functions
of parity (-1)J and (-1)J+1. The expansion coefficients in
equation (7) satisfy the set of close-coupled equations

[ d2

dR2
+ k2

j

]
F j0l0J0M0

jlnJM (R) =

2µ

~2

∑
j′l′n′J′M′

VjlnJM,j′ l′n′J′M′ F
j0l0J0M0

j′l′n′J′M′(R), (8)

where kj = [2µ(E − Ej)/~2]1/2 and Ej denote, respec-
tively, the wavevector of the relative motion and electronic
energy in the j-channel and E designates the total energy.
In the present considerations the electronic-field asymp-
totic energy is chosen to be 0 for the ground state and is
−~∆ω for the excited state, where ∆ω = ωL−ω0 is the de-
tuning from the Ba resonance frequency (~ω0 = EBa(1P)-
EBa(1S)). The matrix elements of V in equation (8), ex-
cluding the term Hint, defined as

VjlnJM,j′ l′n′J′M′ =

〈jlJM ;n |
[
Hel +Hrot +Hrad

]
| j′l′J ′M ′;n′〉, (9)

are compiled in Table 1 [4]. The adiabatic potentials
W1,W2 and W3 in Table 1 correspond, respectively, to the
X1Σ, A1Π and B1Σ states. They all vanish as R→∞.

The matrix elements Vll′(R) in Table 1 are indexed by the
permitted values of channel-state quantum numbers l for
a given total angular momentum J . Here for the nonde-
generate X1Σ initial state of e-parity only l0 = J0 is per-
mitted. The 3 × 3 V matrix for the threefold degenerate
set of final states for a given J separates into two blocks
of opposite parity: a 1 × 1 block for the A1Π state of f
parity with l = J and a 2×2 block for the B1Σ and A1Π
states of e parity with l = J±1. Contrary to the free-field
case, the coupled equations (8) include the interaction in-
troduced by the dipolar coupling with the radiation given

by equation (5). The matrix element of Hint for absorp-
tion of a photon of polarization q in the space-fixed frame
can be transformed to the molecular (rotating) frame as
follows [15]

See equation (10) above

where Ω is the projection of j on the internuclear axis. In
the present case Ω = Λ, where | Λ〉 is either a 1Σ(Λ = 0)
or 1Π(Λ = ±1) singlet molecular state. Finally, after the
small algebra the matrix element (10) takes on the form

See equation (11) above

Note that the first term in the curly parenthesis exhibits
the Hund’s case (e) selection rule l = l0 and the second
term, which vanishes asymptotically, implies the selection
rule l = l0 ± 2. The present calculations have verified the
guess that the latter term is only of little consequence for
the 1S → 1P transition, although the presence of induced-
transition moments is of great importance in the case of
asymptotically forbidden transitions.

For the matrix elements of Hint the following selec-
tion rules are satisfied: J = J0 + b,M = M0 + q and
p = −p0, where p designates parity and b takes on the
three possible values of the branch index b, -1, 0, +1 cor-
respondingly to P,Q and R branches. The selection rules
permit radiation-induced transitions from the e-parity ini-
tial state of total angular momentum J0 to the two coupled
final e-parity states with J = J0 − 1 (P branch), to the
single final f -parity state with J = J0 (Q branch) and to
the two coupled final e-parity states with J = J0 + 1 (R
branch). Although the Hint matrix elements depend onM
and q, Julienne and Mies showed [13] that for weak radia-
tion field this dependence can be eliminated from coupled
equations by introducing reduced radiative coupling ma-
trix elements

(j, l, J ‖ d(1) ‖ j0, l0, J0) =
〈jlJM | d(1)

q | j0l0J0M0〉

(J1M,−q | J0M0)
·

(12)
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(j, l, J ‖ d(1) ‖ j0, l0, J0) = δll0(−)l0+1−j0−J0(2j + 1)1/2(2J + 1)1/2W (j0, j, J0, J ; 1, l)(j ‖ d(1) ‖ j0), (13)

fk0,k(j,m← j0,m0; ε0, q, ω) =
2πi

(kj0kj)
1/2

∑
J0M0l0ml0JMlml

i(l0−l)Y ∗l0ml0
(k̂0)Ylml(k̂)(j0l0m0ml0 | J0M0)(jlmml | JM)

× Sω(jlJM ← j0l0M0; ε0q), (15)

Table 1. Matrix elements of V (R) defined by (9) (B(R) = ~2/2µR2).

1S+1S, e-parity

l0 = J0 W1(R) +BJ0(J0 + 1)

1P +1 S, f-parity

l = J W2(R) +BJ(J + 1)− ~∆ω

1P +1 S, e-parity

l = J − 1 l = J + 1

l = J − 1
J

2J + 1
W3 +

J + 1

2J + 1
W2

[J(J + 1)]1/2

2J + 1
(W2 −W3)

+BJ(J − 1) − ~∆ω

l = J − 1
[J(J + 1)]1/2

2J + 1
(W2 −W3)

J + 1

2J + 1
W3 +

J

2J + 1
W2

+B(J + 1)(J + 2)− ~∆ω

Consequently, the complete radiative scattering problem
can be solved by setting up the six coupled equations,
including the initial state and the five possible final chan-
nels accessible from the initial state.

If one neglects the R dependence of the electronic tran-
sition dipole moment, the reduced matrix elements can be
expressed in terms of the nonvanishing asymptotic atomic
transition moment

See equation (13) above

where W is a Racah coefficient. The task of scattering the-
ory is to determine the radial functions F (R) from equa-
tion (8) and extract the S-matrix elements from them by
imposing the proper asymptotic boundary conditions. As-
suming that all off-diagonal elements of H vanish asymp-
totically, one requires

F j0l0jl (R→∞) ∼ δj0jδl0le
−i(kj0R−l0π/2)

−

(
kj0
kj

)1/2

S(jl← j0l0)ei(kjR−lπ/2),

(14)

where kj is the asymptotic wavevector in a final channel
j and, correspondingly, kj0 refers to an initial channel j0.

The S-matrix elements can be used to predict the cross-
section for any scattering experiment, for example, the
cross-section for producing the final-state atoms in a par-
ticular one of their degenerate quantum states or the total
cross-section for light-induced scattering from the initial
to the final set of states.

2.2 Cross-sections

Standard scattering theory allows one to write the desired
radiative scattering amplitudes in terms of the S-matrix
elements as follows

See equation (15) above

where Y ’s are spherical harmonics and ε0 denotes an initial
relative kinetic energy. After averaging over initial states
and integration over final scattering angles one finds the
cross-section for the j,m← j0,m0 transition

σω(jmq) =
π

(2j0 + 1)k2
0

∑
l0,l,J0,M0

|
∑
J

(ljM −m,m | JM)

× Sω(jlJM ← j0l0J0M0; ε0q) |
2 . (16)
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In the weak-field limit Sω depends linearly on Hint. Mak-
ing use of the Wigner-Eckart theorem one can factorize
Sω into a geometrical and dynamical part [13]

Sω(jlJM ← j0l0J0M0; ε0q) = (J1M,−q | J0M0)

× sbω(jl ← j0l0J0; ε0q).
(17)

The reduced radiative S-matrix elements sbω contain all
the information about the optical collision in which for
each branch b the transition j, l ← j0, l0 takes place from
states of each initial J0 and parity. After introducing the
factorization (17) into equation (16), one obtains [4,13]

σω(jmq) =

j+1∑
t=j−1

3(j1m,−q | t,m− q)

(2t+ 1)
σtω(j), (18)

where the transfer cross-section σtω(j) for the considered
here case (j0 = 0, l0 = J0) is given by

σtω(j) =
π

k2
0

∑
J0

2J0 + 1

3

∑
l

| ptω(jlJ0ε0) |2, (19)

with

ptω(jlJ0ε0) =
+1∑
b=−1

(2J + 1)1/2(2t+ 1)1/2

×W (l, j, J0, 1;J, t)sbω(jl← j0l0J0; ε0q)

(20)

and J = J0 + b. Finally, the total cross-section σ(∆ω)
which is independent of q for producing the final state j
can be written as

σ(∆ω) =

j∑
m=−j

σω(jmq). (21)

Another expression for the total cross-section for produc-
ing the final 1P1 state can be derived if we are interested
only in lineshape and not in polarization. After averag-
ing over the initial states m0 and summing over the final
states m one gets from equation (16) the line profile as

σj←j0(∆ω) =
1∑

b=−1

σbj←j0 (∆ω), (22)

where

σbj←j0 (∆ω) =
π

k2
0

∑
l0l

(2J + 1) | SJω(jlJ ← j0l0; ε0) |2

(23)

with l0 = J0 and b = 0,−1 and 1, respectively, for the
Q,P andR branches. The coupled equations (8) are solved
numerically for a given choice of ε0, ∆ω and J0 for the
permitted values of b and l to get the five corresponding
radiative S-matrix elements.

2.3 Spectral profile and polarization

The total radiative scattering cross-section σ(∆ω) can be
related to the normalized absorption coefficient Kω in the
far spectral wings as

Kω =
〈σ(∆ω)v〉

φ
/cm5, (24)

where v is relative collision velocity and the angle brack-
ets indicate an average over the thermal velocity distribu-
tion. The radiative scattering cross-sections σω(jmq) can
be used to calculate the measured polarization ratios for
either linear (q = 0) or circular (q = ±1) polarization
experiments. The radiative excitation rate coefficients are
defined as follows

kω(m, q) = 〈σω(jmq)v〉 (25)

and the polarization ratios are calculated from them for,
respectively, linear (Ps) and circular (Pc) polarization [4]
as

Ps(∆ω) =
kω(0, 0)− kω(1, 0)

kω(0, 0) + kω(1, 0)
(26)

and

Pc(∆ω) =
kω(1, 1)− kω(−1, 1)

kω(1, 1) + kω(−1, 1)
· (27)

The numerical solution to the set of six-channel close-
coupling equations yields the five S-matrix elements
needed to calculate the collisional depolarization cross-
sections and absorption profile for the 1P ← 1S transition
in the alkaline earth atom perturbed by the RG atom.

3 Calculations

3.1 Molecular potentials

In order to solve the set of coupled-channels equations (8)
we should have the reliable adiabatic potentials W1(R),
W2(R) and W3(R) for the respective X1Σ, A1Π and
B1Σ states of the M -RG system. Such potentials for
Ba-He were reported earlier by Czuchaj et al. [18]. For
the other atomic pairs the calculations have been per-
formed very recently and the obtained results will be
published shortly. The calculations are based on a non-
local pseudopotential/SCF-CI scheme. In this approach
the two valence electrons of the M atom are treated ex-
plicitly while the M core is simulated by the l-dependent
energy-adjusted pseudopotential along with the polar-
ization potential which includes only the dipole term.
On the other hand, the RG atom is treated as a eight-
valence electron system with its core simulated by scalar-
relativistic l-dependent energy-consistent pseudopoten-
tial. In the molecular calculations the RG atom remains
frozen in its ground-state Hartree-Fock form. Of course,
such a frozen atom cannot relax in the field produced by
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Fig. 1. Adiabatic potential curves and transition dipole mo-
ments as a function of internuclear separation for the Ba-He
and Ba-Ne systems. Dotted lines show the appropriate differ-
ence potentials.

the alkaline earth atom. In order to account for polariza-
tion effects, the frozen RG atom is supplied with the static
dipole and quadrupole polarizabilities along with the dy-
namical correction β1. In addition a valence configuration-
interaction (CI) treatment accounts for valence correlation
effects and for the coupling between valence and core-
valence correlation. The polarization potential includes
a cut off function to avoid singularity when the valence
electron penetrates the atomic core too deeply. The calcu-
lations are carried out in a Cartesian Gaussian basis set.
First, for each internuclear separationR of the M -RG sys-
tem a SCF calculation is performed to obtain the molec-
ular Hartree-Fock orbitals for following CI calculations.
A restricted CI calculation includes all single and double
excitations from the M doubly occupied nsσ valence or-
bital. It is essential in this approach that the calculated
potentials are obtained without adjustment to any exper-
imental data concerning the M -RG quasimolecule. Due
to that the calculated interaction energies may be con-
sidered as an independent source of information on the
investigated system. The theoretical potential curves for
the X1Σ, A1Π and B1Σ states of Ba, Sr and Mg interact-
ing with He and Ne are displayed in Figures 1a, 2a, 3a and
1c, 2c, 3c, where the appropriate difference potentials are
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Fig. 2. Adiabatic potential curves and transition dipole mo-
ments as a function of internuclear separation for the Sr-He
and Sr-Ne systems.

also drawn. In general, all the potential curves possess a
repulsive character except for very shallow van der Waals
minima at larger internuclear separations.

For Ba-He the calculated ground-state dissociation en-
ergyDe amounts to 3.5 cm−1 and the equilibrium position
Re=11 bohr and, respectively, for Ba-NeDe=64 cm−1 and
Re=10 bohr. The A1Π potential curve is characterized by
De=5 cm−1 and Re=11 bohr for Ba-He and De=68 cm−1

and Re=10 bohr for Ba-Ne. For the other atomic pairs
considered the potential minima are shallower than the
corresponding ones for Ba-He and Ba-Ne. As a rule the
potential minima decrease when going through the series
from Ba to Mg. Besides the potential minima are getting
deep with increasing mass of the perturber. In turn the
A1Π −X1Σ and B1Σ−X1Σ difference potentials for He
and Ne calculated for a given alkaline earth atom differ
not much from each other. On the other hand there exist
distinct differences among the appropriate difference po-
tentials calculated for various alkaline earth atoms. Some
extrema in the difference potentials displayed in the fig-
ures give rise to a satellite structure in the line profile
which lies, however, far beyond the detuning range inves-
tigated. As seen from Figure 1a, the B1Σ potential curve
for Ba-He possesses a distinct hump near R=5 bohr which
is the result of repulsion with a higher term of the same
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Fig. 3. Adiabatic potential curves and transition dipole mo-
ments as a function of internuclear separation for the Mg-He
and Mg-Ne systems.

symmetry. Figures 1b–3b and 1d–3d show the relevant
transition dipole moments calculated simultaneously with
the potential curves as a function of internuclear separa-
tion. As seen the X1Σ → A1Π transition dipole moment
for Ba-He(Ne) and Mg-He(Ne) are nearly independent of
R in the entire range of internuclear separation, whereas
the X1Σ → B1Σ dipole moment rapidly decreases for
R� 8 bohr. Both the transition dipole moments for Sr-He
and Sr-Ne depend considerably on internuclear separation
for R�10 bohr.

3.2 Numerical calculations

The scattering calculations were carried out with the log-
derivative propagator of Johnson [21]. Separate calcula-
tions were performed for a given initial kinetic energy ε0,
initial total molecular angular momentum J0 and a detun-
ing ∆ω from the resonance frequency at several values of
temperature. In addition all the calculated cross-sections
have been averaged over relative energy distribution

〈σω(T )v〉 =

∫
σω(ε)vε1/2f(ε)dε

/∫
ε1/2f(ε)dε (28)

using a normalized Maxwell-Boltzmann distribution func-
tion. As to the choice of radiation flux φ, it can be taken

as an arbitrary parameter within wide limits [4,13]. In
the present calculations φ is taken to be 0.01 W cm−2 ex-
cept for very small detunings lying in the impact region,
where the flux had to be lessened to satisfy the condi-
tion that the Rabi frequency ΩR � ∆ω. In any case its
choice should guarantee linear dependence of the reduced
matrix elements sω on φ1/2. The reduced atomic matrix
elements (j ‖ d ‖ j0) for the 1P ← 1S transition are calcu-
lated simultaneously with the adiabatic potential curves
and amount to 3.5014, 3.2221 and 2.3429 e·bohr, respec-
tively, for Ba, Sr and Mg. The coupled-channels equations
can be put into three separate sets of coupled equations,
one for each of the three possible branches. Thus for each
J0 one obtains one set of three coupled equations for the
P branch, a similar set for the R branch and a set of two
coupled equations for the Q branch. The separate branch
calculation appears to be more computationally efficient
than the full calculation (set of six coupled equations, if
all three branches are treated simultaneously).

4 Results

Any cross-section can be written as a sum of partial cross-
sections σ(J) over a wide range of the molecular angular
momentum. The partial cross-sections have to be calcu-
lated for the necessary range of J0. For a given energy and
detuning the partial cross-sections were calculated from
J0=1 up to J0max, where J0max is large enough to ensure
convergence of the J0 summation. Typically the partial
cross-section is required for several hundred J0 values. In
many cases σ(J) is sufficiently smoothly varying function
of J and interpolation using only every nth value of J can
successfully be applied. There are three distinct regions of
detuning for which behaviour of the partial cross-sections
is different. One can speciffy the far wings, the intermedi-
ate wings and the impact region located close to the line
centre. In the far-wing detuning region, absorption is pre-
dominantly to a single molecular state, to the A1Π state
for red detunings and to the B1Σ state for blue detunings.
The present calculations have been carried out for both
the asymptotic value of the transition dipole moment and
allowing for its R dependence. The obtained results (not
shown here explicitly) indicate that the R dependence of
the transition moment causes only a little effect on the
partial cross-section. Besides its influence decreases with
going from the red to the blue detunings where it dis-
appears completely. In consequence the R dependence of
the transition dipole moment may be neglected in calcula-
tions of the line profile and polarization for the resonance
transition of Ba, Sr and Mg perturbed by He and Ne.
In general the partial cross-section exhibits an oscillatory
structure in dependence on J0 with a growing number of
maxima while going from the far wings to the line centre.
For small collision energy and larger detunings the partial
cross-section possesses only one maximum. With increas-
ing energy the number of maxima grows for both large
and small detunings.

Figures 4–6 show the absorption coefficient K(∆ω)
multiplied by (∆ω)2 to better display the profile structure.
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Fig. 6. Absorption coefficient multiplied by (∆ω)2 for the resonance transition of Mg perturbed by He and Ne calculated at
T = 800 K as a function of detuning: ( ) thermally averaged points.

In the case of Ba-He and Ba-Ne the theoretical profile has
been adjusted to the experimental value at one point lying
in the intermediate wing region on the blue side. In the
case of Sr and Mg the theoretical line profiles are given in
arbitrary units (a.u.). For accurate comparison with ex-
periment [10,22] the calculated absorption coefficient for
Ba-He and Ba-Ne has been averaged over the collision en-
ergy for T = 800 K which corresponds to the experimental
temperature. As seen from Figure 4 the overall agreement
is quite good, although some deviations occur for far-wings
detunings. The theoretical profile extends beyond the ex-
perimental one in the far blue wing region and reaches a
maximum at a red detuning somewhat smaller than that
at which the experimental maximum occurs. The temper-
ature effect on the line profile has been investigated for
Ba-He and Sr-He. As seen from Figures 4a, 4b and 5a, 5b
K(∆ω) is not very sensitive to T for the range of detun-
ings shown. The theoretical line profiles for all the atomic
pairs exhibit distinct deviations from the Lorentzian line
shape in the far-wing regions, particularly on the blue side
where a clear satellite structure develops. For Ba-He and
Ba-Ne this result is supported by experiment. It is also
worth noting that the calculated difference potentials for
the considered systems show no extrema in the detuning
region investigated and hence no satellites are predicted.
The obtained result would rather indicate an alternative
origin of satellite structure in the far wing regions of the
resonance line of the atoms studied.

Figures 7–9 show the calculated linear polarization
ratio Ps as a function of detuning. The thermally aver-
aged theoretical results at T = 800 K are also compared
with the corresponding measured values for Ba-He, Ba-
Ne, Sr-He and Sr-Ne. The overall agreement is quite good.
For Ba-He and Ba-Ne the theoretical values appear to lie
somewhat above the measured points, particularly in the
impact region and for red detunings. For Sr-He and Sr-
Ne the agreement is even better except for the far red
wing region for Sr-He, where the theoretical polarization
ratio exhibits pronounced minimum near 100 cm−1 not
observed experimentally. This disagreement seems to be
connected with the rapid drop of intensity on the red side
of the absorption line as seen in Figure 5. For the same
reason good agreement of theory with experiment for red
detunings in the case of Sr-Ne seems rather fortuitous.
On the other hand the rapid drop of intensity on the red
side of the spectral line for Sr-He and Sr-Ne is rather the
result of deficiency of the calculated potentials for these
two species. As seen from Figures 1–3, the A1Π − X1Σ
difference potentials for Sr-He and Sr-Ne essential for far
red detunings differ clearly from the ones belonging to the
other species. Possible deficiency of the calculated poten-
tials for Sr-He and Sr-Ne must be ascribed to the semiem-
pirical parameters defining the pseudopotential for the Sr
atom. Figure 7 also shows the linear polarization ratio
for Ba-He calculated for average energy at three different
temperatures. It is seen very weak dependence of Ps on
T . Finally, Figures 10 and 11 show the thermally averaged
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Fig. 7. Linear polarization Ps for the resonance transition of Ba perturbed by He and Ne as a function of detuning: ( )
thermally averaged values calculated at T = 800 K; (�) experimental values [10].
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Fig. 9. Linear polarization Ps for the resonance transition of Mg perturbed by He and Ne calculated at T = 800 K as a function
of detuning: ( ) - thermally averaged points.

0

25

50

75

100

1 10 100 1000

Ba-He
Mg-He
Sr-He

b)

blue wing

0

25

50

75

100

1101001000

a)

red wing

                                     ∆ω /cm-1

P
c(

∆ω
) 

/%

Fig. 10. Circular polarization Pc for the resonance transition of Ba, Sr and Mg perturbed by He as a function of detuning.

circular polarization ration Pc at T = 800 K for Ba, Sr and
Mg perturbed, respectively, by He and Ne. Unfortunately,
there are no Pc data for the systems studied in this paper
to compare with our results. Such measurements have only
been made for the Ba-Ar pair [7]. The present theoretical
results for the circular polarization agree, however, quite
well with overall prediction of theory. According to the
theory [23], the red-wing circular polarization decreases
as the detuning leaves the impact region, reaches a mini-
mum at a detuning in the intermediate wings region and
then increases with further increase of detuning. For the

blue wing the circular polarization decreases with increas-
ing detuning from the impact region and falls off to zero
for higher detunings. As seen from Figures 10 and 11 our
theoretical results verify the prediction of the theory in
the entire range of detunings.

5 Conclusion

In this article we have demonstrated fully quantum close-
coupling calculations of the absorption coefficient and po-
larization of fluorescence light in dependence on detuning
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Fig. 11. Circular polarization Pc for the resonance transition of Ba, Sr and Mg perturbed by Ne as a function of detuning.

for the Ba, Sr and Mg atoms perturbed by He and Ne.
The calculations are based on the theoretical adiabatic
potential curves obtained by means of a pseudopotential
SCF-CI technique. Particular attention was paid to re-
producing the recently published experimental data for
the Ba-RG systems obtained in the Andersen’s labora-
tory. Our thermally averaged absorption coefficients for
Ba-He and Ba-Ne agree very well with the experimental
ones over a wide range of detunings except for far wing
regions. We have also obtained good agreement for lin-
ear polarization for these species. Our thermally averaged
points lie only slightly above the experimental points. For
the circular polarization there are no data to compare with
our results. However, overall behaviour of the calculated
circular polarization agrees very well with the prediction
of theory. The present calculations support both the qual-
ity of our potential curves and the coupled-channels tech-
nique in understanding of collisional redistribution of light
in gases under single collision conditions and in the weak
radiation field limit. Further calculations involving heavy
RG atoms are in progress.
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